HELINI Swine flu [H1N1] Real-time PCR Kit [Two tube Assay]

Instructions for use

For use with: Agilent, Bio-Rad, Roche Lightcycler-96, Roche-Z480/Cobas-480, Applied Bio systems [ABI], Thermo-Piko-Real, Rotor gene 5/6plex, Alta-96, Cepheid Real time PCR machines.

8048

25

HELINI Biomolecules, Chennai, INDIA

Intended Use

The HELINI Swine flu [H1N1] Real-time PCR Kit is an in vitro nucleic acid amplification kit for the qualitative detection of Swine flu H1N1 virus [Influenza-A/H1N1/H3N2] and Influenza-B.

Kit components

Components	Volume Per reaction	Number of vials	Volume Per vials
One step RT-PCR Master Mix	8μ1	2	200μ1
RT-Taq enzyme mix	2μ1	2	50µ1
InfA/H1N1/Endogenous control [RNaseP] Primer Probe Mix [H1N1 PP mix]	5μ1	1	125μ1
Influenza-B & H3N2 Primer Probe Mix [InfB/H3N2 PP Mix]	5μ1	1	125μ1
Positive control mix	10μ1	1	250µl
Water, PCR grade		1	4ml

Page 1

Storage

- The kit is shipped on gel ice. Upon arrival, all components should be stored in -20°C. They are stable until the expiration date stated on the label.
- Repeated thawing and freezing should be avoided, as this might affect the performance of the assay.
- If the reagents are to be used only intermittently, they should be frozen in aliquots. Storage at 2 to 8°C should not exceed a period of 5 hours.

Material and instruments required

- Real-time PCR instrument having FAM/HEX/Cy5 channel
- Automatic Nucleic acid extraction system or spin column based purification kit for the purification of nucleic acids
- Desktop centrifuge having 13000rpm or above with a rotor for 1.5/2 ml reaction tubes
- Centrifuge with a rotor for PCR strips/tubes and 96 well plates
- Optical cap qPCR tubes or strips or 96 wells
- Micro Pipettes (variables)
- Micro Pipette tips with filters (disposable)
- Powder-free gloves (disposable)

[Please ensure that all instruments used have been installed, calibrated, checked and maintained according to the manufacturer's instructions and recommendations.]

Product Use Limitations

- All reagents may exclusively be used in molecular diagnosis.
- The product is to be used by personnel specially instructed and trained in Molecular diagnosis.
- Strict compliance with the user manual is required for optimal PCR results.
- Attention should be paid to expiration dates printed on the box and labels of all components. Do not use expired components.
- Wear protective disposable powder-free gloves, a laboratory coat and eye protection when handling specimens and kit components.
- Avoid microbial and nuclease (RNAse/RNase) contamination of the specimens and the components of the kit.
- Always use RNAse/RNase-free disposable pipette tips with aerosol barriers.
- Use separated and segregated working areas for sample preparation, reaction setup and amplification/detection activities.
- The workflow in the laboratory should proceed in unidirectional manner. Always wear disposable gloves in each area and change them before entering a different area.
- Store positive and/or potentially positive material separated from all other components of the kit.
- Do not open the reaction tubes/plates post amplification, to avoid contamination with amplicons.

- Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organizations.
- Do not autoclave reaction tubes after the PCR, since this will not degrade the amplified nucleic acid and will bear the risk to contaminate the laboratory area.
- Discard sample and assay waste according to your local safety regulations.

Technical Assistance

For technical assistance and more information, please contact; 0091-44-244490433 helinibiomolecules@gmail.com

Page 5

Product description

HELINI Swine flu [H1N1] Real-time PCR Kit constitutes a ready-to-use system for the detection of Influenza-A-H1N1/H3N2 & Influenza-B specific RNA using polymerase chain reaction (PCR). It contains reagents and enzymes for the specific amplification of the conserved region of the Universal Influenza-A/B, H1N1 and H3N2 genome, and for the direct detection of the specific amplicon in FAM/HEX/Cy5 channel. In addition, it contains an endogenous control amplification system to identify possible PCR inhibition and RNA purification efficiency.

Specificity

Universal Influenza-A& B and H1N1/H3N2 primer and probe have been designed for the specific and exclusive *in vitro* detection of Influenza-A/H1N1/H3N2 & Influenza-B strains.

- H1N1 [H1N1-2009pdm California/2009, H1N1-2009pdm NY/2009, globally reported human infected H1N1 strains in the year of 2010/11/12/13/14/15/16/17/18/19].
- H3N2- A/Fujian/411/2002(H3N2)
- Influenza B Victoria & Yamagata lineage strains

The target sequence is highly conserved and sequences in this kit have 100% homology with a broad range of clinically relevant reference sequences based on a comprehensive bioinformatics analysis.

Dynamic linear range

The linear range was evaluated by analyzing a logarithmic dilution series of RNA concentrations ranging from 1.00E+09 to 1.00E+00 copies/ μ l. At least six replicates per dilution were analyzed. The linear range is 1.00E+09 to 1.00E+00 copies/ μ l.

Analytical Sensitivity

The analytical sensitivity is defined as the concentration of RNA molecules (copies/µl) that can be detected with a positivity rate of 95%. The analytical sensitivity was determined by analysis of dilution series of quantified H1N1/H3N2/Influenza-A/B specific pDNA from 0.001copies to 10copies/µl in triplicates. Under optimal PCR conditions, the analytical sensitivity is 0.2 copy per micro liter.

Note:

RNA Purification

Purified RNA is the starting material for the Real-time PCR assay. The quality of the purified RNA has a profound impact on the performance of the entire test system. It has to be ensured that the purification system used for RNA purification is compatible with real-time PCR technology.

Page 7

If you are using a spin column based sample preparation procedure having washing buffers containing ethanol, it is highly recommended to perform an additional centrifugation step for 3min at approximately $17000 \times g$ ($\sim 13000 \text{ rpm}$), using a new collection tube, prior to the elution of the RNA.

Endogenous control

Human gene [RNaseP]is given as endogenous control. It amplifies a single copy human gene from the test samples. A successful amplification indicates that test sample is properly collected and has its biological property with required amount of human cells for PCR.

The Endogenous control primer and probe present at PCR limiting concentrations which allows multiplexing with the target sequence primers. Amplification of the endogenous control template does no tinterfere with detection of the pathogen even when present at low copy number. The endogenous control is detected through the HEX channel and gives a CT value of 23 +/-9.

Detection Protocol

Things to do before starting

- Before use, all kit components need to be thawed completely, mixed by gently inverting and centrifuged briefly.
- Make sure that Positive and Negative control is included in every run.
- Include 0.5 reaction volume for pipetting error while calculating the volume for total number of reactions.

Components	Volume per reaction	Volume per reaction
	H1N1	Inf-B/H3N2
One step RT-PCR Master Mix	8µ1	8µl
RT-Taq enzyme mix	2μ1	2μ1
Primer Probe Mix	5μ1	5µl
Purified RNA	10µl	10µl
Final reaction volume	25µl	25µl

Page 9 Page 10

Negative Control setup [NTC]

Add 10µl of PCR grade water.

Qualitative Positive Control setup

Add 10µl of the Positive control

Centrifuge PCR vials briefly before placing into thermal cycler. [Note: There should not be any bubbles in the reaction mix.Bubbles interfere with fluorescence detection.]

Programming Thermal cycler

Sample volume	25μ1
Fluorescence Dyes	FAM / HEX / Cy5
Passive reference	None
Ramping rate	Default

Thermal Profile

	Step	Time	Temp
	Reverse transcriptase	20min	50°C
	Taq enzyme activation / Hold	15min	95°C
	Denaturation	20sec	95°C
40	Annealing/Data collection*	20sec**	60°C
cycles	Extension	20sec	72°C

Data collection/Acquisition	Targets
FAM	H1N1 / Influenza-B
HEX	Endogenous control / H3N2
Cy5	Influenza-A

^{**} Some qPCR machines may require minimum 30sec for data collection; in that case, set to 30sec, this will not affect the performance.

Page 11 Page 12

Tube-1

	Ct range	
FAM-H1N1	HEX-Endo	Cy5-InfA
<37	<33	<37

Tube-2

FAM - Influenza-B	HEX-H3N2
<37	<37

Reading the graph:

Step-1 – Endogenous control Validation

Select the test samples alone for the endogenous control analysis. Select HEX dye and view the graph of endogenous control amplification. A successful amplification Ct value must be within Ct 23 + -9.

This range indicates that test sample has enough cells to perform PCR reaction and NO PCR inhibition in the reaction. Any sample value goes beyond Ct 33 indicates that either sample does not have enough cells OR issues in the purification OR inhibition in the PCR reaction.

Endogenous control will not get amplified in the negative and positive controls. Ignore a late noise HEX amplification graph in the NTC and Positive control wells.

Step-2-H1N1

Select the NTC and Positive control wells, select FAM channel, and view the graph of amplification. The NTC must be flat with no Ct value. If required adjust the threshold value just above the NTC. The PC must be amplified. Select test samples wells one by one and view the amplification.

NTC justifies NO contamination in the reagent as well as fine pipetting and its environment. PC justifies the reagents storage conditions and reaction parameters are as prescribed.

Page 13 Page 14

Qualitative interpretation of results:

NTC	PC	Endo Control	Inf-A	H1N1	H3N2	Inf-B	Interpretation
Z	Ь	Positive	Positive	Positive	Negative	Negative	H1N1 RNA detected
Z	Ь	Positive	Negative	Negative	Negative	Negative	NOT detected
Z	Ь	Positive	Positive	Negative	Positive	Negative	H3N2 RNA detected
Z	P	Positive	Negative	Negative	Negative	Positive	Influenza-B RNA detected
Z	Z	Negative	Positive	Positive	Positive	Positive	Invalid – Repeat with fresh samples or RNA
Р	Ь	Positive	Positive	Positive	Positive	Positive	Invalid Contamination
Z	Ь	Positive	Positive	Negative	Negative	Negative	Negative Negative Influenza-A RNA detected

Limitations

Good laboratory practice is essential for proper performance of this assay. Strict compliance with the instructions for use is required for optimal results.

Analysts should be trained and familiar with testing procedures and interpretation of results prior to performing the assay.

A false negative result may occur if inadequate numbers of organisms are present in the sample due to improper collection, transport or handling. Appropriate specimen collection, transport, storage and processing procedures are required for the optimal performance of this test.

Extreme care should be taken to preserve the purity of the components of the kit and reaction setups. All reagents should be closely monitored for impurity and contamination. Any suspicious reagents should be discarded.

The presence of PCR inhibitors may cause under quantification, false negative or invalid results.

Potential mutations within the target regions of the pathogen's genome covered by the primers and/or probes used in the kit may result in under quantification and/or failure to detect.

As with any diagnostic test, the HELINI Swine flu H1N1 Real-time PCR results need to be interpreted in consideration of all clinical and laboratory findings.

Page 15 Page 16

Quality Control

In accordance with the HELINI Biomolecules in house Quality Management System, each lot of HELINI Swine flu H1N1 Real-time PCR kit is tested against predetermined specifications to ensure consistent product quality.

Explanations of symbols

In vitro diagnostic medical device

Catalogue number

Pack size – number of tests

Manufacturer

Page 17 Page 18

Manufactured by

HELINI Biomolecules,

Ohmlina, 26, 2nd Avenue, Khuthubi Complex, Vettuvankeni, Chennai 600115, Tamilnadu, INDIA www.helini.in info@helini.in helinibiomolecules@gmail.com +91-44-24490433

Page 19 Page 20